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Summary 

This paper continues the work of Shail and Gooden [1-4] on the motion generated in a semi-infinite fluid by a 
singularity or submerged solid moving particle when the surface of the fluid is contaminated with a surfactant 
film. The fluid motion is assumed to be slow and quasi-steady, but the restriction to axially symmetric flows of 
earlier investigations is removed. The various linearised models of Shail and Gooden [3,4] governing the variation 
of film concentration are discussed, the constitutive properties of the film being expressed in terms of Boussinesq 
coefficients of surface shear and dilatational viscosities. The resulting film boundary conditions are applied to 
solve the non-axially symmetric problem of a Stokeslet placed in the bulk fluid with its axis parallel to the 
surface (assumed planar throughout the motion), and the results used to calculate approximate expressions for 
the resistive force on a particle which translates far from and parallel to the surface. A similar analysis is given 
for the case of a rotelet whose axis is parallel to the surface. 

1. Introduction 

In a series of papers [ 1-4] Shail and Gooden have investigated various aspects of the fluid 
motion generated when a submerged solid rotates or translates slowly in a semi-infinite or 
bounded viscous fluid whose surface is contaminated with a surfactant film. Papers [1] 
and [2] concern the rotation of a solid about an axis perpendicular to the surface, and in 
[3] and [4] the work is extended to the translation of the body in a direction perpendicular 
to the surface film. All the fluid motions considered so far have been axisymmetric, and it 
is the purpose of this paper to initiate the extension of the analysis to problems of a 
non-axially symmetric nature whch arise, for example, when a body translates along or 
rotates about an axis parallel to the surface film. As in [3] and [4] the bulk fluid motion is 
assumed to be sufficiently slow to permit the quasi-steady Stokes approximation to be 
made, and the constitutive properties of the surface film are described in terms of the 
Boussinesq coefficients of surface shear and dilatational viscosity, ~/ and g. The form of 
the dynamic boundary condition at the surfactant film is taken to be that proposed by 
Scriven [5], and the physical processes governing surface concentration of surfactant 
comprise surface diffusion, adsorbtion and desorbtion, and for a soluble surfactant bulk 
diffusion into the film from the substrate fluid. 

In Section 2 the equations of fluid motion are formulated using cylindrical polar 
coordinates (p, ~, z). Suitable forms for the dynamic boundary conditions appropriate to 
the non-axially symmetric fluid motion are deduced, it being assumed as in [3] and [4] that 
the surface film remains plane and incident with z = 0 throughout the motion. To these 
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dynamic conditions must be appended the conditions governing the film surface con- 
centration (which is related via an equation of state to the film surface pressure), and 
forms for the various film processes, linearised about the equilibrium film state after the 
manner suggested by Levich [6] and used in [3] and [4], are given. 

In Section 3 the various model conditions are applied to the problem of finding the 
motion generated in the bulk fluid by a Stokeslet placed with its axis parallel to the planar 
fluid surface. The technique of expressing the fluid velocity vector in terms of harmonic 
functions is exploited, and the solution is used in conjunction with Brenner's analysis [7] 
to derive approximate expressions for the drag on a body translating along a principal axis 
of resistance which is parallel to and at a large distance from the surfactant film. In 
Section 4 the same methods are applied to treat the problem of a rotelet placed in the bulk 
fluid with its axis parallel to the surface film. Again this solution and Brenner's technique 
lead to asymptotic expressions for the frictional couple on a body rotating about a 
principal axis of resistance which is parallel to the surface. In the concluding section some 
further avenues of research are outlined. 

2. Basic equations 

A semi-infinite expanse of viscous incompressible fluid, with coefficient of viscosity/~, 
occupies the region z > 0, where (p, q,, z) are cylindrical polar coordinates with z-axis 
drawn vertically downwards. The surface z = 0 is contaminated with a monomolecular 
surfactant film whose coefficients of surface shear and dilatational viscosity are 7/and x, 
respectively. The bulk liquid motion is assumed to be generated by a singularity (Stokeslet 
or rotelet) or moving solid body, and the fluid velocity vector u(p, co, z) has cylindrical 
polar components (u, v, w). The motion is considered to be sufficiently slow for the 
quasi-steady Stokes creeping-motion approximation to be made, which requires that 
Ua/~, << 1 and Ua2/~,h << 1, where 1, is the kinematic viscosity of the bulk fluid, a a 
typical dimension of the moving solid, h a measure of its depth below the surface and U 
its speed. The linearised time-independent equations of motion and continuity then read 

( ) 2 a v  a =ap - p--; G'  (1) 

and 

1 3 p ( 2  1 ) 2 3 u  
v - 7  (2) 

1 3p = v2w,  (3) 
3z 

(4) 
1 a 1 av aw 
p 

where 

a 2 1 a 1 a 2 
~7 2 . . . .  - ' l - - -  

3p 2 + P G + p2 3(/)2 
a2 (5) 

3 Z  2 ' 

and p is the dynamic pressure. 
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Following [3] and [4] the surfactant layer is assumed to remain plane and incident with 
z = 0 throughout the motion, which implies that 

w = 0  on z = 0 , 0 ~ < 0 <  oo. (6) 

Further all components of velocity and stress are required to tend to zero as p2 + z 2 ._> oO, 
and at a solid boundary the usual no-slip condition is imposed on the fluid velocity vector. 

Consider next the dynamic conditions at the surfactant film. The Scriven boundary 
conditions [5] on z = 0, which express the balance of substrate and internal film stresses, 
can be written in the form 

-To~p - %zdP = - VPs + (x + ~) v ( d i v  u) -7 / cu r l  curl u, (7) 

where the vector operators are two-dimensional operators in the plane z = 0, "% and %~ 
are bulk-fluid components of stress, Ps is the surface pressure, and u = (u(p, O, 0), v(p, O, 
0), 0). Further, p and ~ are unit vectors in the directions of p- and 0-increasing, and by 
virtue of (6), on z = 0, 

Ou Ov 
~ z = ~  ' %~=~z 

Thus, the p- and 0-components of (7) are 

- ~ ,  . . . . .  ~ ( ~  + ,7) - -  - -  ( 8 )  Oz op ~ l - ~ P u ~ + ~  p~ o~ ~ ( p v ) - ~  , 

and 

Ov 1 Ops 
Oz p O0 

(9) 

on z = 0. Using the equations of motion and continuity (1) to (4) it can be shown that on 
Z = 0 ,  

O ( 1  O l O u }  l o p  1 02w 02/3 
o~ 7 g ( P v ) - 7 ~  = . p  o~ ~ p a~o~ Oz :' (lO) 

and 

_ _ t  p v ,  ~ Ou 1 Op OZw 02U 
p2 OZ2 " 

( 1 1 )  

Equations (10) and (11) together with (4) now enable the surface conditions (8) and (9) to 
be expressed conveniently as 

a( n )  O~w O~u 
Ou = ~ P~ _ K ~-~--~ Oz 2 
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Ov 10_~( ~/ )K 02W 02V 
g"~z = p  P , - - ~ P  + - ~ +  Oq~Oz Oz 2 (13) 

As noted in [3] it is not possible to impose simultaneously with (6), (12) and (13) the 
requirement of the vanishing of the normal stress ~zz at the surface; the resulting normal 
stress imbalance is assumed to be compensated by surface tension effects (see [8] for a 
discussion of this point). 

To (12) and (13) must be added the appropriate equations governing the surface 
concentration n(p, ep) in the film, and the relation of n to the surface pressure Ps via an 
equation of state. These conditions and their linearisation about an equilibrium state for 
slow motions are fully described in [3] where relevant references are given and we adopt 
the same notations in this work. Thus n(p, q~) is written as 

n = n o + n', n' << no, 

where n o is the equilibrium concentration. If the film is taken to be gaseous then the 
equation of state has the form 

p ~ = k T n ,  (14) 

where k is Boltzmann's constant and T is the (constant) temperature. Following the 
analysis of [3], the non-axially symmetric linearised film condition in the case where there 
is surface diffusion of the surfactant in the film, together with adsorbtion from and 
desorbtion to the bulk fluid, reads 

(1 0 + l  Ov } { I 0 [ On' ~ 10Zn ') 
n o p=~p(pU) P =~ = D  e ~ p l p - ~ p  ]+p"-~ Oq---- ~ -- f in '  (15) 

on z = 0 (c.f. equation (17) of reference [3]). Here D e is the coefficient of surface diffusion, 
and fl > 0 the constant appearing in the adsorbtion-desorbtion flux (equation (15) of [3]). 
The left member of (15) may be simplified using the continuity equation (4), and if the 
surface concentration n'(p, q~) is regarded as the value on z = 0 of a harmonic function 
n'(p, ep, z) which is defined throughout z >/0 and vanishes at infinity, then (15) can be 
expressed as 

OW O2rlt 
n o --~z = D ~ O z---- 7 + fin' on z = 0. (16) 

Relations (6), (12), (13) and (16), together with (14), now constitute a complete set of 
boundary conditions at the surfactant film z = 0 which, in conjunction with the no-slip 
condition at a moving solid, are sufficient for the determination of the velocity field 
throughout the fluid and the surface concentration of surfactant. It is readily verified that 
they reduce to the conditions used in previous papers [ 1-4] in the cases (i) axisymmetric 
rotational motions with u = w = 0 and ~ /0~  = 0, and (ii) axisymmetric motions without 
swirl where v = 0 and 0 /8~  = 0. 

The remaining film process which we consider is diffusion of a soluble surfactant from 
the bulk fluid into the film. Let c(p, ep, z) denote the concentration of solute in the bulk 
fluid, and following [3] we write c = c o + c', where c o is the stable equilibrium concentra- 
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tion. When the Peclet number Ua/D o << 1, where D O is the bulk diffusion coefficient, c' 
satisfies Laplace's equation 

vEc ' =  O, (17) 

subject to an appropriate boundary condition at the surface of a moving solid, e.g. for an 
impermeable solid the normal derivative of c' vanishes at its surface. The equation of 
surface mass balance in the film takes the linearised form 

1 0 3 1 03v] Do 03n' 
, o  03z on z = 0 ,  (18) 

where n' = hoc', h o being the adsorbtion depth (see [9]), and the right-hand side of (18) is 
the diffusion flux into the film. (Note that although the surface concentration n' exists 
physically only on z - 0, a fictitious "surface concentration" n'(p, ep, z)  may be defined 
throughout the fluid by the relation n ' =  hoc'. ) Again (18) may be simplified using the 
equation of continuity, and (16), (18) may be written compendiously as 

03w 03Zn ' Do 03n' 
n°-~z = Ds 03z 2 h o 03z + fin' on z = 0, (19) 

a form which subsumes, for appropriate values of D s, D O and fl, each of the film processes 
examined. 

3. The Stokeslet problem and drag formulae 

As a preliminary to estimating the drag on a particle which translates parallel to the 
surface film, we consider the motion generated by a Stokeslet of strength f ,  placed at the 
point (0, 0, h) in the bulk fluid with its axis oriented parallel to the Cartesian x-axis. In an 
unbounded fluid the Stokeslet produces a velocity field Vo(r, h), with cylindrical polar 
components 

2 ( z - h ) 2  c o s  dp, 
u° = f R1 R~ 

f sin 
t)0 R 1 ' 

f p ( z - h )  
cos q~, (20) w0 R~ 

the associated pressure field being 

po(r,  h)  = 21~fp cos q~ (21) 
R~ ' 

where R~ = ( p 2  + ( g  _ h)2)1/2. In the semi-infinite fluid situation a suitable solution (v, p) 
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of  (1) to (4) can be constructed in terms of  harmonic  functions X = X(P, z) cos ¢h and 
O = 0(p,  z)  sin oh, which vanish as p2 + z 2 ~ oo, as 

OX) OX 
v = vo(r, h) + Vo(r , - h )  + z V  -~z ---~-z z + V X  + cur l (Oz) ,  (22) 

and 

p = p o ( r , h ) + p o ( r , - h ) + 2 ~ - -  
02X 
OZ 2 , (23) 

thereby satisfying condit ion (6) at the outset. (In (22) z is a unit  vector parallel to the 
z-axis, and the second term is an image Stokeslet.) Writ ing the cylindrical polar compo-  
nents of velocity (u, v, w) in the forms 

u=u,(p,z)coscb, v=v , (p , z )  sinep, w=w,(p,z)cosep, 

the pressure p as p = Pl(P,  z)  cos ~, and the non-equil ibrium part  of  the surface pressure 
Ps as 

Ps =Ps1(P) cos ¢h = kTn,(p) cos q~ t, 

then from (22) and (23), 

u, = 2f  "-~1+ - f  
(z  - h)  2 (z  + h)  2 
- -  "l'- - -  

R 3 R~ 

02X 3 X 0 
+ z a--P~ + -~-0 + - '  P (24) 

P 3z P 30 ' 

. [ z - h  z + h ~  ~2 X 
+ (26/ 

and 

P l = 21.t fo (-~l + --~2 ) + 21~ b2X--3z 2 , (27) 

where R 2 = (O 2 + (z + h)2) 1/2. Further, the boundary  conditions (12) and (13) become 

0Ul Oqrl O2WI 02Ul (28) 
~t 0Z = 00 + K0---'O'-~+ n 0Z ----5-' 

0 1 ) 1  ¢/T 1 K O W  l 02Vl 

g Oz = p p az +r /  3z 2 , (29) 

t Here n'(p, ~) = n, (p) cos ~, and n l(P) can be regarded as the value on z = 0 of a function n t (O, z) in z >/0 
such that n ~ (p, z) cos q~ is harmonic. 
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on z = 0, where 

7r, = p s l ( p ) - - ~ p , ( p ,  O) 

= kTnl(p)- 271{-~fi-3 + ( 02X 

with R = (pZ + h2)1/2. 
Using (24) to (27) in (28) and (29), a straight-forward calculation yields the relations 

~{,~ 02X, 1 00)O'/rl (03X 4f 30fh 2P 2 ) 
I~ 0--~ ~- ~ ~ = ~ p + x  ~ - -  OpOz 2 R 3 R 7 

+*/(3 03~X 4 1 020 8f 42fh2 30fh4 ) (31) 
OP 0Z2 P OZ 2 R 3 -t R 5 R 7 , 

and 

[20X--[ - 020 ] = - - + X  ~rl (1 --+02X 2f  6fh 2 ) 
I't~ p OZ OpOZ ] p ; OZ 2 R 3 R 5 

3 02______X + 030 2f  + 6fh 2 ] (32) 
+~1 P OZ 2 OpOz 2 R3 R5 }, 

where all the partial derivatives are evaluated on z - 0 .  Adding and subtracting (31) and 
(32), and introducing the operators ® _+= (0 /00)+ p-l ,  the boundary conditions can be 
reduced to the concise forms 

6~+{(x+3*/)82__.XX_+ 020 0 X 80 } 
- 8z 2 */Oz-----~-2l~-Szz-T-l't-Ozz +~r' =f+(p ) ,  (33) 

where 

R ~ ~ +  15(r + ~ ) ~  , (34) 

(1 6h 2 5h4 / 
f _ ( p ) = 6 f ( r + * / )  R3 R5 + R7 ]. (35) 

Suitable representations for X, O, vanishing as p2 q_ Z2 __) 00, are 

x(p, z) =ff  A(s)J,(sp) e-S~ds, (36) 

O(p, z) = fo°°B(s)J , (sp)  e-'Zds, (37) 



246 

and rq has the Hankel transform 

it, = f o ~ C ( s ) J , ( s p ) d s .  (38) 

with 

s((x + 3~/)s + 2/x)A + C = 2f((x + ~)hs - (~ + 3~))s e -hs. (43) 

To supply a further relation between A and C we next apply (19). Writing 

nl(p, z)  = f o ~ D ( S ) J l ( S p )  e-SZds, (44) 

then (30), (36) and (44) show that 

C = kTs-~D - 2nsA - 4nfe  -sh, (45) 

where integral (A5) has been used. Also from (26) and (19), 

( 2fp 6fhZ______pp ~)2X) •2nl D° On' (46) 
n o R 3 R 5 + - -  = D s - -  - -  + f i n  I, , ~Z 2 ~Z 2 h o 3z 

Substitution of (36) to (38) into (33)+, and use of the fact that 

% J , ( s p )  = ss0(~p) 

produce 

fo°°S [((x + 3~/)s 2 + 2p~s}A + s(rls + # ) B  + C ] J o ( s p ) d s = f + ( p ) ,  0 ~< p < m; (39) 

thus, invoking the Hankel transform theorem, 

fo s((~+3n)~+E.).~+s(ns+.)B+c= of+(o)Jo(so)do 

= 2 f { - ( ~ + 5 n ) + h s ) s e  -h" , 0~<s< oo, (4O) 

using the various integrals collected in the Appendix. In a similar manner (33)_, the 
relation ®_Jl (so) = - sJ~ (so), and the Hankel inversion theorem give 

fo 4(,,+ 3n)s+ 2~)a - s (ns+t~ )B+c= - of_(o)J2(so)do 

= 2 / ( x + n ) ( h s -  1)s e -h', 0 ~<s < ~ .  (41) 

It now follows immediately from (39) and (40) that 

B ( s )  = - 4f~1 e -hs (42) 
~ls + iL ' 
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on z = 0. Thus (36), (44) and appropriate integrals from the Appendix give 

no(2f(1 - hs) e-hS + sA) = s- 'A(s)D,  (47) 

where A(s) = Do s2 + (Do/ho)s + ft. Solving (43), (45) and (47) it is found that 

A(s)  = 2f  e-hS(hs-  1) 
(nokT+ (r + ~l) A) 

nokTs + A((K + ~)s + 2/.t) ' 
(48) 

4nofl~s(1 - hs ) e -hs 
D(s) = nokTs + A((~ 1 + x)s + 2/~)' (49) 

and the velocity, pressure and surface concentration are now fully determined. 
We now turn to the application of this Stokeslet solution to the derivation of 

approximate expressions for the drag on a particle which translates without rotation with 
velocity Vi parallel to the x-axis. The axis of translation is assumed to be a principal axis 
of resistance of the particle, and Fi, Fool denote the viscous drag forces for the semi-in- 
finite and an everywhere infinite bulk fluid. If a denotes a typical dimension and h 
measures the depth below the surface film of a suitable centre Q of the body, then Brenner 
[7] has provided an approximation to F correct, in general, to O(a2/h2). t Specifically, for 
translating bodies of the proposed symmetry and writing e = a/h, the ratio F/F~ has the 
form 

F 1 (50) 
= 1 - K(FoJ6crlxUa)e + O(e3) ' 

where K is a constant depending only on the presence of the surface film and not on the 
detailed particle geometry. Brenner's derivation of (50) by the method of reflexions 
requires that the boundary conditions at the surface of the fluid are linear and homoge- 
neous, which is the case in the present work; an alternative approach to (50) and the 
estimation of the error can be given using the integral-equation method proposed by 
Williams [ 10]. 

In order to calculate K we follow the prescription given by Brenner [7], and Happel and 
Brenner [11]. First the Stokeslet strength f is identified with F~/6~rl~; then if vl(Q) 
denotes the regular part of (22), i.e. v - Vo(r, h), evaluated at the centre Q(0, 0, h) of the 
body, we have that 

6~r/.t h 
K= ~ (v , (Q) . i ) .  (51) 

Thus, from (22) and the results of the Stokeslet analysis, K is found as 

3~h4 f ° [ ( h s - 1 ) 2 ( ( r + * l ) A + n o k T )  271 ]ds. 3 °° s e_2h s 
K =  - - ~ +  ~oo k-T~ +- A ((-~ + ~-)s + 2 - ~  + , s + g  

(52) 

t An exception to this order arises in certain problems involving bulk diffusion into the surface film, and has 
been exemplified in [3] and [4]. 
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Since the error estimate in the denominator of (50) is O(e3), the asymptotic expansion of 
(52), correct to O(e), is required for use in (50). 

We next consider the drag formulae provided by (50) and (52) in various representative 
asymptotic situations. Suppose first that the surfactant is insoluble with surface diffusion 
as the controlling film process; then A(s) = Dss 2 and from (52) 

K =  - 3 + 3 K 1 ,  (53) 

where 

fo f0 = ~ ( t -  (1 +N2eZt z) + 2Noe t 
K1 1)2 1 + Nlet + N2e2t 2 e-2tdt 1 + Noet e~Ztdt" (54) 

In (54), N o = ~/l~a, N1 = 21~Ds/nokTa and N 2 = (7/+ K)Ds/no kTa2 are three dimension- 
less parameters; N o appears in the rotation problems of [1] and [2] (where it is denoted by 
h), whereas N I and N 2 were introduced in [3], to which the reader is referred for some 
typical values. When No, N 1, N 2 are all of O(1), the expansion of (54) for e << 1 yields 

K, = ¼ + ½Noe - -~N,e + O(e 2 ), (55) 

with 

K = ,63 3(N1 - 4No)e + O(e2).  (56) 

Thus, from (50) 

F 
= 1 - ~ e  + ~ ( 3 ~ -  N, + 4No)e 2 + O(e3), (57) 

where • = F~/6~r~tUa. For a spherical particle • = 1, whereas for a disk-shaped particle 
moving normal to its plane, ~ = 8/3~-. Two limits of (54) are worth noting; letting N O ~ 0 
and N~ ~ oo with N 2 fixed, we find that K = - 3 / 8 ,  the value appropriate to an 
uncontaminated free surface [7]. Letting N O ~ ~ ,  N 2 ~ ~ with N I fixed, then K 1 = 15/16 
and K = 9/16,  again in agreement with the result quoted in [7] for a rigid plane bounding 
surface. 

We turn now to the absorbtion-desorbtion film process, for which Ds = D O = 0 with 
A(s) = ft. Then 

K =  - 3  +-3K4 2, (58) 

where 

' - l )2 e-2'd,+2N0,f0 ' Jo 1 +eN3t 1 + Noet 
- - e - 2 t d t ,  (59) 

with N 3 = (nokTfl- l+ ~ + r) /2/~a,  a dimensionless group introduced in [3]. We first 
examine the situation in which N o, N 3 >> 1, e << 1, with A 1 = N3e and A 2 = Noe both of 
order unity. Then K 2 in (59) is O(1), and the various integrals can be evaluated in terms of 
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the exponential integral El(x ) (see [12]). It is found that 

5 3 
r= = a  + a-S7 + - -  

whence 

( )2 
1 1 1 + 2 

2A] A1 ~ l  1 e2/A~EI(2/A1)--~2eZ/A2EI(2/A2), (60) 

(1) 
K = 9  1+-~- 7 - + - -  

3 , ( ,+)2  
8A] 4A, ~ 1 e2/A'EI ( 2 / A , )  - ~ A  2 e2/A~E, ( 2 / A  2). 

(61) 
Since K = O(1), (50) shows that 

F 
= 1 + K~e + K2~2e2 + O(e3), (62) 

with K recorded in (61). 

Suppose now that No, N 3 = O(1); expansion of (59) for e << 1, together with (58), now 
give 

1 N K =  - 3{1 - e(N o + a 3)} + O(E2), (63) 

and F/Foo follows as 

F 
= 1 -3eq~ +3~(3qb  + N o + ¼N3)e 2 + O(e3). (64) 

Again the limit No, N 3 --. 0 reproduces the correct result for a free clean surface. 
To complete the discussion of drag forces we briefly treat the case of bulk diffusion 

into the film for which D, = fl = 0 and A(s) = (Do/ho)s. Then 

K =  3 + 3  gK3, 

where, from (52), 

K3 = foOO(t_ l)21+ N4 + Nsete_2tdt + 4 + Nset ) oo l + No 

(65) 

(66) 

As in [3], the dimensionless quantities N4, N 5 are defined by N 4 = honokT/2#D o and 
N5 = 01 + x)/2l~a. By way of illustration, suppose that N 4 and N5 are both O(1); then 
from (65) and (66) we find that 

3 [N4+2 Nse 
K =  - ' ~ N 4 + l  2 (N4+ 1) 2 

+ 2No~} + O(d), 

and the drag ratio F/Foo is 

F 3(N4 + 2 )~  
- - = 1  
F~ 16(N 4 + 1) 

N, 
e+ 3 ~  2(N4+ 1) 2 

3(N4+_ 2)2 dP+2No}e2+O(e3). 
16(N 4 + 1) 2 

(67) 
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It was pointed out in [3] that only the first two terms in a formula such as (67) follow 
rigorously from the method of reflexions, since the boundary condition on the solute 
concentration at the moving particle surface is not invoked. However the work of [4] 
indicates that the corresponding O(e2)-term in axisymmetric translation problems is valid 
for an impermeable solid, and we conjecture that this is the case in (67). 

4. The rotelet problem and resistive torques 

In this section the Stokeslet singularity of the preceding analysis is replaced by a rotelet of 
strength 3' situated at (0, 0, h) with axis parallel to the x-axis. Thus in  an everywhere-in- 
finite fluid the rotelet produces a velocity field v~(r, h) with cylindrical components 

(z - h) ~ Y__p_O sin q,, (68) u~ = - 3' R----f- sin q~, v~' = - • cos q~, w~' = R~ 

the pressure being constant throughout the fluid. For the semi-infinite fluid configuration 
a suitable solution (v, p) of (1) to (4) is again expressible in terms of two harmonic 
functions X = X(P, z) sin q~ and ® = O(p, z) cos 4~, which vanish as p 2 + z 2 ~ ~ ,  and an 
image rotelet as 

aX)  3X 
v=v~(r,h)-v~(r,-h)+zV -~z ---~-z z + V X + c u r l O z '  (69) 

and 

- a 2 x  (70 )  p = 2pt az---- ~ , 

where the pressure at infinity is taken as zero. It is evident, using (68), that (69) satisfies 
identically the requirement that w = 0 on z = 0. 

Writing the cylindrical components of the velocity field as u = u~(p, z)sin q~, v = 
vl( p, z) cos ~, w = wl( p, z) sin q,, and the bulk and surface pressure fields as 

p =p,(p, z) sin q~,p~ =Psi(P) sin q~ = kTn,(p) sin if, 

then from (69) and (70), 

z + h z -  h ~ 32X ~X 0 
u ,=~,  R3 R--~-) +z0--p-~+ ao p '  (71) 

z+h z - h )  z 3X X 30 
v , = y  R~ R--~- + ;  -~z't P Op' (72) 

1 1 ) 02X 
w.= ' t p  R3 n3 +Z~z  2 '  (73) 
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and 

02X 
Pl = 2 ~ - -  

OZ2 " 
(74) 

Further, the surfactant boundary conditions (12) and (13) are expressed as 

Oul O~rt 02wl O2Ul 
I~ Oz = Op + r O p ~  + T l - - '  Oz 2 (75) 

and 

0Vl ~1 K OW l 02Vl + -- + - -  
OZ p p-'~-Z ~ OZ 2 (76) 

on z = 0, where 

7r l = k Tn l ( o ) - 2 ~1 o 2--''~X 
OZ 2 ' 

(77) 

After some calculation, the forms corresponding to (33), (34) and (35) are found as 

02X - 3aO OX 0(9 } 
@+ ( x + 3 ~ ) - ~ z 2 + ~ 3 z - - S - 2 / ~ - ~ z + / ~ z + r h  = g + ( p ) ,  (78)+ 

where 

3 5h 2 ) 
g + ( o ) = 6 Y ( x + 2 r / ) h  R 5 R7 , (79) 

I h 2 ) 
g _ ( p ) =  3 0 ~ h  g ~ R7 • (80) 

To proceed with the computation of X and 0 the Hankel transform representations (36) 
through (38) and (44) are again introduced. Application of (78) _+ and (16) then yield, in a 
similar manner to that of Section 3, the results 

A(s) = - 2Ts e-hS(nokT + (x + q)A) 
.okTS + a((~ + n)s + 2~) ' 

(81) 

B ( s )  - 23~s  e -hs 
~/s+/~ ' (82) 

and 

D ( s )  = 4n°T#s2 e-hS 
.okrS + a((~ + ~)s + 2~,)' (83) 
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whereby the velocity, pressure and surface concentration are fully determined. 
The rotelet solution is now applied to the estimation of the viscous torque on a solid of 

appropriate symmetry which rotates with angular speed fl about an axis parallel to the 
x-axis. As in Section 3, a denotes a typical dimension of the rotating solid, and h is the 
depth below the surface of a suitable centre Q on the axis of rotation; further - Ti and 
-T~i denote the resistive torques acting on the solid for the semi-infinite and 
everywhere-infinite fluid cases. When e = a / h < <  1, Brenner [7,11] has shown that in 
general 

T 1 
(84) 

T~ 1 - K(T~/8~rt*f~aa)e + O(eS) ' 

where K again depends only on the presence of the surface film and not on body 
geometry. (For bulk-diffusion flows the O(e 5) error estimate is subject to the same caveat 
as in Section 3.) To derive an expression for K from the rotelet solution we first identify 
the rotelet strength y with Too/8~r #. Writing v 1 for the regular part of (69), i.e. v - v~(r, h), 
and setting wl = ½(curl v~)O, then following Brenner's analysis it can be shown that 

O~ 1 = - - 0 a l i  , 

and 

K = 8 ~ ' ~ h 3 6 o l / T ~  

So ( ) = _ ~ + h  3 s3e_2h s n o k T + A ( x + * l )  71 ds. 
n o k r s + A ( ( x + ~ l ) s +  2# ) F2(~/s+/x) 

(85) 

Thus, bearing in mind the error estimate in (84), the asymptotic expansion of (85) correct 
to O(e) is required. 

We complete this section by listing T/T~  for the various film processes and representa- 
tive asymptotic limits. In these results 'It = T~/8~rl~f~a 3, with g' = 1 for a rotating 
spherical particle. 

(i) Surface diffusion model 

The appropriate form for K is 

K = - ~ 6 + f o ~ t 2 e  -2t 
(1 + N2e2t 2) 

1 + Nlet + N2e2t 2 
f0  ~ t3 dt + ½eN o 1 + Noe--t e-2tdt" (86) 

When N o, N 1, N 2 are all O(1), (84) and (86) give 

T 
= 1 - 3 ~ e 3  + 1-ag~(No - 2Nl)e  4 + O(eS). (87) 

T= 

Letting N 0 -~0  and N l ~ o a  with N 2 fixed in (86), we find that K = - I  for an 
uncontaminated free surface, whereas the limits N 0, N 2 - ,  oo with N I fixed gave K = 5 /16  
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for a rigid bounding plane. These values may be confirmed from results given in [8]. 

(ii) Desorbtion / adsorbtion model 

For this film process, 

1 + tN3t ~- 2(1 + eNot ) dt.  

When N o, N 3 >> 1 with A 1 = N3e and A 2 = Noe both of order unity, then 

K=,~-~ ~ + ~  

(88) 

+ 4 ( ~ + - ~ z ) - - ~ e Z / A ' E , ( 2 / A 1 ) - 2 ~ 2 e 2 / a 2 E , ( 2 / A 2 ) ,  

(89) 
with 

= 1 + Kq~e 3 + O(tS).  (90) T~ 

However, when No, N 3 = O(1), expansion of (88) for t << 1 gives 

K =  - l~+ k ( U o  + 2N3)e + O(e2),  (91) 

with 

= 1 - l ~ e S  + 3 ' ~ ' ( N  o + 2N3)t  4 + O(eS). (92) 
r= 

(iii) Bulk-diffusion model 

In this case 

So { K =  -1~  + t 2 e-2t N4 + Nset 
1 + N 4 + N s e t  } -~ 2(1 + Noet ) dt; (93) 

thus for N o, N 4, N 5 all O(1), 

3 41 ,{ 
K =  1 6 ( N 4 + l ) + - ] - g  N O + ( N 4 + I )  2 e + O ( e 2 ) ,  (94) 

and 

T (3N4 - 1 ) { 2N5 } 1~4 --l- O(175). (95) 
r~  -- 1 + 16(N, + 1) ~e3 + ~rqr NO + ( N  4 + 1) 2 



254 

Again the O(e4)-term in (95) is conjectured to be valid for a rotating impermeable solid. 

5. Conclusion 

In this paper the general non-axially symmetric problem has been formulated for a 
submerged body which translates or rotates in a semi-infinite viscous fluid whose surface 
is contaminated with a surfactant film. The bulk-fluid motion is assumed to be sufficiently 
slow for the quasi-steady Stokes approximation to be used, and the dynamic boundary 
conditions which couple the motion of the film to that of the substrate are those due to 
Scriven [5]. In order to avoid a moving-boundary problem and to render the analysis 
tractable it has been assumed that any vertical motion of the surface can be neglected 
(suppressed by a sufficiently large surface tension, say), and that throughout the motion 
the film remains incident with a fixed horizontal plane. This approximation has been 
widely used, although recently Berdan and Leal [13] have examined methods of allowing 
for surface deformation. It may prove possible at a future date to employ their ideas in the 
surfactant case, and consequently eliminate the normal-stress imbalance which occur at 
the surface in the present model. 

The Stokeslet and rotelet solutions represent a first application of the general non-axi- 
ally symmetric formulation. These solutions can be regarded as providing elements of 
various Green's tensors, and are of interest in their own right (see [14] for some related 
considerations for the two-dimensional Laplace equation). However, when used in con- 
junction with the analysis of Brenner [7], they yield asymptotic estimates of the drag forces 
and torques on translating and rotating bodies which are far from the surface in the sense 
that a/h << 1. For the various film processes considered, no fewer than six dimensionless 
quantities, N O . . . . .  Ns, arise in the text, and depending on their orders in terms of e, a large 
number of different asymptotic expressions for drag and torque can be envisaged; 
Sections 3 and 4 contain a representative but by no means exhaustive selection. In order 
to assess the accuracy of these it is desirable to have exact solutions for specific solids 
available for comparison. The provision of such solutions is a task to be undertaken, but 
based on the work in [4] concerning axisymmetric translation problems, percentage errors 
of less than 10% can be expected with e = 0.5, whereas for e ~< 0.2, the errors should be 
very much smaller. Since the error estimate is O(e 5) in rotation problems compared with 
O(e 3) in translation situations, even better accuracy should obtain for torques. 

Returning to the question of exact solutions (in the numerical sense), free from the 
restriction a/h << 1, a number of configurations offer themselves for investigation. In the 
case of a sphere either translating along or rotating about an axis parallel to the surface, a 
representation of the velocity field due to Dean and O'Neill [15] can be used in 
conjunction with a bispherical coordinate system to effect a solution. When the body is a 
thin disk translating in its own plane which is parallel to the surface (wherein the rig-factor 
of Section 3 is 16/97r), we can represent the velocity field in terms of harmonic functions, 
and the solution of the resulting mixed boundary-value problems reduces to that of a 
system of coupled Fredholm integral equations of the second kind after the manner of [4]. 
The detailed analysis of these problems, together with some extensions in which a bulk 
fluid occupies the region z < 0, will be given in future papers. 
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In this Appendix we collect together the values of various integrals which appear in the 
Hankel inversions of Sections 3 and 4. With R = (p2+ h2) 1/2, Gradshteyn and Ryzhik 
([16], p. 682) give the integral 

fo °~ pJo(sP)R______7__dp =hl e_~h" (A1) 

Successive application of the operator -h-lO/Oh then produces the results 

and 

fo ¢~ pJo(sP)R________~dp=__ ~1 (1 + hs) e -h~, (A2) 

fo ~ pJ°( sp )R~dp = ~-~I ( l + hs + ½h2s2 ) e-hs. 

Two further integrals obtainable from [16] are 

(A3) 

-- i °° J,(sp) do = 1 (1 - e-h~), (A4) ----Y- V~ 
ao 

fo ~ O2J'(sP) e-h~ R ~ d P  = . (A5) 

Repeated differentiation of (A4) and (A5) with respect to h now shows that 

1 f~  J,(sp) dp (1 + hs) e-hs), 
"10 R 3 = ~ s  (1 - 

foOO p2j, (sp) s -sh --~ dp = ~ e  , 

fo ~ g,(sp) dp 1 ~h2s 2 RS = ~-s { 1 -  (1 +hs+- )e-hS}, 

fo=P%(SP)dp_ s ( l+hs)e_hS,  
R 7 - 1 - ~  

and 

fo~ Jl(SP) do= 1 R- 7 G ( 1  - (1 + hs + ~h2s2 + ~h3s31 e-"S). 

Finally, if in (A1) to (A3) we write 

pJo(SO) = ~s ,  (so) - o J, (so), 
~ v  

(A6) 

(A7) 

(AS) 

(A9) 

(AIO) 
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and use (A6), (A8) and (A10), it is found that 

and 

fo ~ pJz(SO)R._______S___ d p = h__~s 2 (2 _ 1  (2 + 2hs + h2s 2 ) e-hs), 

fo~PJ2(SP)R____._S_~ d p = h_~s 2 ( 2 1  _ (2+2hs+h2s 2 + ½h3s3)e_hS) ,  

fo ~° pJ2(sP), 1 (2 + 2hs + h2s 2 -~ aP=~s(2-  +½h3s 3 + ~ h ' s ' ) e - h s ) .  

(Al l )  

(A12) 

(A13) 
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